Segmentation of Cells from Spinning Disk Confocal Images Using a Multi-stage Approach
نویسندگان
چکیده
Live cell imaging in 3D platforms is a highly informative approach to visualize cell function and it is becoming more commonly used for understanding cell behavior. Since these experiments typically generate large data sets their analysis manually would be very laborious and error prone. This has led to the necessity of automatic image analysis tools. Cell segmentation is an essential initial step for any detailed automatic quantitative analysis. When the images are captured from the 3D culture containing proliferating and moving cells, cell-cell interactions and collisions cannot be avoided. In these conditions the segmentation of individual cells becomes very challenging. Here we present a method which utilizes the edge probability map and graph cuts to detect and segment individual cells from cell clusters. The main advantage of our method is that it is capable of handling complex cell shapes because it does not make any assumptions about the cell shape.
منابع مشابه
A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملProstate segmentation and lesions classification in CT images using Mask R-CNN
Purpose: Non-cancerous prostate lesions such as prostate calcification, prostate enlargement, and prostate inflammation cause too many problems for men’s health. This research proposes a novel approach, a combination of image processing techniques and deep learning methods for classification and segmentation of the prostate in CT-scan images by considering the experienced physicians’ reports. ...
متن کاملLarge-scale automated image analysis for computational profiling of brain tissue surrounding implanted neuroprosthetic devices using Python
In this article, we describe the use of Python for large-scale automated server-based bio-image analysis in FARSIGHT, a free and open-source toolkit of image analysis methods for quantitative studies of complex and dynamic tissue microenvironments imaged by modern optical microscopes, including confocal, multi-spectral, multi-photon, and time-lapse systems. The core FARSIGHT modules for image s...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کامل